یادگیری عمیق چیست؟

  • 21 بهمن 1398
  • 6 دقیقه
فناوری اطلاعات - رباتیک و تکنولوژی
یادگیری عمیق یا Deep learning که به عنوان یادگیری ساختارمند عمیق یا یادگیری سلسله وار هم شناخته میشود بخشی از خانواده بزرگتر روش های یادگیریِ مبتنی بر نمایش داده های یادگیری است و در مقابل الگوریتم های مختص کار قرار دارد. یادگیری ممکن است نظارت شده، نیمه نظارت شده یا بدون نظارت باشد.

معماری های یادگیری عمیق همچون شبکه های عصبی عمیق، شبکه های باور عمیق و شبکه های عصبی بازگشتی در زمینه هایی از جمله بینایی رایانه، شناسایی گفتار، پردازش زبان طبیعی، شناسایی صوت، فیلترینگ شبکه های اجتماعی، ترجمه ماشینی، بیوانفورماتیک، طراحی دارو و برنامه بازی های تخته ای استفاده شده اند که در آن ها نتایجی قابل قیاس با متخصصین انسانی و بعضاً برتر از آن ها ارائه کرده اند.


مدل های یادگیری عمیق از الگوهای پردازش اطلاعاتی و ارتباطی در سیستم های عصبی زیستی الهام گرفته شده اند اما تفاوت های مختلفی در ویژگی های ساختاری و عملکردی با مغزهای زیستی دارند، که باعث عدم همخوانی آنها با شواهد علوم اعصاب میشود.

یادگیری عمیق

پردازش ابری چیست؟ هر آنچه باید در مورد پردازش ابری بدانید.

تعریف یادگیری عمیق

یادگیری عمیق، دسته ای از الگوریتم های یادگیری ماشین است که:

  • از تعداد زیادی از لایه های چندگانه واحدهای پردازش غیرخطی برای استخراج و تبدیل ویژگی استفاده میکنند. هر لایه، از خروجی لایه قبل به عنوان ورودی استفاده میکند.
  • به شکلی نظارت شده (مثل طبقه بندی) و یا بدون نظارت (مثل تحلیل الگو) یادگیری میکنند.
  • لایه های چندگانه ای از نمایش را یادگیری میکنند که متناظر با سطوح مختلفی از انتزاعات هستند؛ این سطوح سلسله ای از مفاهیم را تشکیل میدهند.

بیشتر مدل های یادگیری عمیق مدرن، بر شبکه های عصبی مصنوعی مبتنی هستند، گرچه ممکن است شامل فرمول های گزاره ای یا متغیرهای پنهانِ سازمان یافتهِ لایه ای در مدل های مولد همچون گره ها در شبکه های باور عمیق و ماشین های بولتزمن عمیق نیز باشند.


تعریف یادگیری عمیق

تاثیر هوش مصنوعی بر کشاورزی جهان

در یادگیری عمیق، هر سطح یاد میگیرد که داده های ورودی خود را به یک نمایش اندکی مجردتر و ترکیبی تر تبدیل کند. در یک کاربرد شناسایی تصویر، ورودی خام میتواند ماتریسی از پیکسل ها باشد؛ اولین لایه نمایشی ممکن است پیکسل ها را مجرد کند و لبه ها را کد گذاری کند؛ لایه دوم ممکن است چینش لبه ها را بسازد و کد گذاری کند؛ لایه سوم ممکن است بینی و چشم ها را کد گذاری کند؛ و لایه چهارم ممکن است تشخیص دهد که تصویر، شامل یک چهره است. چیزی که اهمیت دارد، این است که یک پروسه یادگیری عمیق، به خودی خود میتواند یاد بگیرد که کدام ویژگی ها بطور بهینه در کدام سطح قرار دهد. 


هوش مصنوعی چیست و چه کاربردی دارد؟حتما این به این مطلب هم سربزنید: هوش مصنوعی چیست و چه کاربردی دارد؟
امروزه هوش مصنوعی همه جا حاضر است!

CAP زنجیره تبدیلات از ورودی به خروجی است. برای یک شبکه عصبی پیشخور، عمق CAP ها، همان عمق شبکه و برابر با تعداد لایه های پنهان بعلاوه یک است. برای شبکه های عصبی بازگشتی، که در آن ها ممکن است یک سیگنال بیشتر از یکبار در یک لایه منتشر شود، عمق CAP بطور بالقوه بینهایت است. هیچ آستانه مشخص جهانی برای جداسازی یادگیری عمیق و یادگیری کم عمق وجود ندارد، اما بیشتر محققان توافق دارند که یادگیری عمیق دارای عمق CAP بیشتر از 2 است. 

Deep Learning

سواد دیجیتال چیست و چه کاربردی دارد؟

مثال هایی از Deep Learning

دستیار مجازی

الکسا، سیری یا کورتانا، دستیار‌های مجازی هوشمندی هستند که از یادگیری عمیق جهت فهمیدن زبان انسان‌ها، وقتی با آن‌ها در تعامل هستند استفاده می‌کنند.

ترجمه

الگوریتم های یادگیری عمیق می‌توانند به صورت اتومات بین زبان‌های مختلف عملیات ترجمه را انجام دهند. این قابلیت می‌تواند برای مسافران، تاجران و کسانی که در دولت هستند مفید باشد.

چت بات ها

بات های مخصوص چت و پشتیبانی در بسیاری از کارخانه ها وظیفه ارتباط و رسیدگی به درخواست های مشتریان را انجام می‌دهند. این ابزار ها می‌توانند با استفاده از یادگیری عمیق به سؤالات متنی و شنیداری پاسخ دهند.

تشخیص چهره

یادگیری ماشین برای تشخیص چهره نیز استفاده می‌شود، اما نه الزاماً برای مسائل امنیتی.

پزشکی و داروسازی

از تشخیص بیماری و تومور فرد تا داروهای مخصوص هر شخص با توجه به ژنوم آن، یادگیری عمیق در این فیلد نیز مورد توجه بسیاری از کارخانه‌ها و شرکت‌های تولید دارو و پزشکی قرار گرفته است.

چت بات هابینایی ماشینی چیست و چه کاربردی دارد؟

کاربردهای یادگیری عمیق

  • شناسایی خودکار گفتار
  • شناسایی تصویر
  • پردازش هنر بصری
  • پردازش زبان طبیعی
  • کشف دارو و سم شناسی
  • مدیریت رابطه مشتری
  • سیستم های توصیه گر
  • بیوانفورماتیک
  • تبلیغات در تلفن همراه
  • بازیابی تصویر
  • شناسایی کلاهبرداری مالی
  • امور نظامی

یادگیری ماشین


نشانی ایمیل شما منتشر نخواهد شد.

متن وارد نشده است

متن وارد نشده است

تا کنون نظری ثبت نشده!

شما اولین نفری باشید که به این ایده نظر می دهید.

مطالب مرتبط

نقش گیاهان در زندگی انسان

12 ۰ ۱۱

جستجو حرفه ای در گوگل چیست؟

دنیای دیجیتال مارکتینگ هر روز در حال پیشرفت است و شما به عنوان فردی که در این عرصه فعالیت می‌کند، باید خود را موظف به یادگیری جدیدترین روش‌ها و متدهای بازاریابی دیجیتال کنید. فرقی ندارد که مدیر تیم بازاریابی دیجیتال، کارشناس تولید و بازاریابی محتوا، کارشناس سئو و بهینه سازی سایت هستید. داشتن اطلاعات به‌روز برای پیشرفت‌تان ضروری است.

5 ۰ ۱۳۹

استعدادیابی چیست؟

استعدادیابی موضوعی است که اهمیت ویژه ای دارد . شناسایی عوامل موفقیت راه را برای رسیدن به هدف هموار می کند . این که مشخص شود چه ویژگی هایی ورزشکاران معمولی را از ورزشکاران نخبه متمایز می سازد کاری بس دشوار است که موضوع پرداختن به استعدادیابی را دشوارتر ساخته است . بیشتر والدین علاقمندند تا کودکانشان موفقیت در یک رشته ورزشی را تجربه کنند . برخی والدین حتی ممکن است تمایل داشته باشند کودک خود را در سطح نخبگان ورزشی و قهرمانان ملی و بین المللی ببینند. این فرآیند نیازمند شناسایی و انتخاب افراد با استعدادی است که شرایط لازم جسمانی ، مهارتی و رفتاری برای موفقیت در یک رشته خاص را داشته باشند .

5 ۰ ۱۴۲

بازسازی و طراحی داخلی چیست؟

طراحی داخلی، نقشه کشی و ساخت و ساز فضاها به دست انسان، بخشی از طراحی محیطی بوده و ارتباط نزدیکی با معماری دارد. از اواسط قرن بیستم به نحوی از واژه دکوراتیو داخلی استفاده شد که تقریبا معنا خود را از دست داد بنابراین واژه های توصیفی بیشتری مورد استفاده قرار گرفته اند.

6 ۰ ۱۲۸